 Sorting and Searching Strings: Final Report

 by Shang-Lin Chen

 Efficiently sorting and searching string or any other data type is one of the most fundamental problems in computer science, both in industrial and in academic research. Many kinds of structures can store, search, and retrieve data, but search trees are the most important and efficient means to date. The paper "Fast Algorithms for Sorting and Searching Strings" by Jon L. Bentley and Robert Sedgewick compares the time complexities of different types of search trees.
 The most common search tree is the binary tree, characterized by nodes that each point to a maximum of two children nodes. A binary search tree's efficiency depends on its height, h. Constructing an n-node binary search tree is O(n*h), and searching an object is O(h). The height of a carefully constructed binary search tree is no more than log n, which leads to a time complexity of O(log n) for a search. A digital search trie can improve the time complexity of constructing and searching n nodes to O(n). However, a digital search trie requires substantially more memory.
 Bentley and Sedgewick point out that a ternary search tree combines the compact size of a binary search tree with the speed of a digital search trie. Before Bentley and Sedgewick published their paper, ternary search trees had only been used as a theoretical device to prove properties of other topics. Few realized that the characteristics of a ternary search tree actually make it ideal for practical use in sorting and searching data.

I. Binary Search Trees

 Most search trees consist of a sequence of nodes starting from a root node. Each node consists of a data item, a keyword used to sort the data in a tree, and pointers that connect each node to its children. In the storage of strings, the data is a string. The number of children and pointers a node can have depends on the type and structure of the tree.

 The first kind of tree Bentley and Sedgewick discuss is the binary search tree. In a binary search tree, each node has two pointers, a left pointer and a right pointer, and thus a maximum of two children. If a binary search tree is represented in an object-oriented language, each node would be an object of a class with a keyword, data, a left pointer, and a right pointer as its data members:

 CLASS Node

 Keyword

 Data

 Left-pointer

 Right-pointer .

 When the data in a binary tree is sorted, nodes with smaller keywords are placed at the left,, and nodes with larger keywords are placed at the right. For example, for the input data with keywords (31 41 59 26 53) [Bentley & Sedgewick97], the node with keyword 31 is used as the root node. The next keyword, 41, is larger than 31, so its node becomes the right child of the root. Then 59 is bigger than both 31 and 41, so its node is the right child of the node containing 41. Since 26 is smaller than 31, its node is the right child of the root. The result is a binary tree with the following structure:

 31

 / \

 26 41

 \

 59

 /

 53 .

 The order of the keywords in the above example resulted in an unbalanced binary search tree. If the keywords were in completely presorted order, the resulting tree would be even more unbalanced, even completely linear like a linked list. Suppose the input keywords are (as at be by he in is it of on or to). The binary search tree formed from this order is:

 as

 \

 at

 \

 be

 \

 by

 \

 he

 \

 in

 \

 is

 \

 it

 \

 of

 \

 on

 \

 or

 \

 to .

The same input keywords arranged in the order (in be of as by is or at he it on to) result in a balanced binary search tree:

 in

 / \

 be of

 / \ / \

 as by is or

 \ \ \ / \

 at he it on to .

The height of a perfectly balanced binary search tree is log n, where n is the number of nodes or keywords; in contrast, the height of a completely unbalanced tree is n, which results in a longer time to process all the nodes. Thus, order does matter in a binary search tree. To minimize the appearance of an unbalanced tree, the keywords should be placed in random order before sorting them into a binary search tree.

 Sorting keywords into a binary search tree is isomorphic to the QuickSort algorithm, which is a recursive procedure for sorting data. In a QuickSort, one keyword is chosen as a base. All keywords smaller than the base are moved to its left, while all keywords larger than the base are moved to its right. Then the procedure is repeated recursively on each of the right and left groups.

 C. A. R. Hoare has shown in a theorem that a QuickSort partitioned around a single randomly selected element sorts n distinct items in 1.386n * lg n expected comparisons, so the time complexity to search n keywords in an n-node binary search tree is O(n * lg n) [Hoare62].
Proof [Van Emden70]:
 Van Emden used the entropy of information states to rederive the results of Hoare’s theorem and then demonstrated his own algorithm for improving the time complexity. We will follow his approach here. Consider a sequence of n numbers. We may consider it as the sequence of the ranks of the numbers, so they are permutations of (1, 2, , n). There are totally n! possible permutations. In a purely random state, each permutation has an equal probality 1/n!. We can define the entropy of this random state as
 E(n) = lg n! , where lg represents the log with base 2.
When the sequence is sorted by the bound rank r as in QuickSort, the r-1 elements at the left and r have an entropy of lg r!, while the sequence at the right has an entropy of lg (n-r)!. Thus, this change of entropy can be defined as n multiplied by a quantity H which is the information yield of the partition,
 nH = lg n! - lg r! - lg (n - r)! .
In Hoare’s algorithm, the bound r is chosen randomly from 1,, n. We can generalize that a certain bound r is chosen with a probability f(r), with r = 1,, n . Normalization requires that:
 SUM (r = 1 to n) f(r) = 1 .
The expectation value of the information yield of the partition is
 Ex (nH) = n Ex (H) = lg (n!) - SUM (r = 1 to n) f (r) { lg (r!) + lg ((n - r)!)},
and
 Ex (H) = (1 / n) lg (n!) - (1 / n) SUM (r=1 to n) f (r) {lg (r!) + lg ((n - r)!)}.
Before sorting, the entropy of the system is lg (n!), and after the complete sorting, the entropy of the system becomes 0. Thus the change of the complete sorting reduces entropy by lg (n!). Since Ex(H) can be considered to be the average reduction of entropy of sorting one pair of numbers, the average time complexity of a Quicksort can be defined as
 T(n) = lg (n!) / Ex (H).
We denote
 (alpha) = 1 / Ex (H),
and note that when n is very large, lg (n!) = n lg (n), so for large n, the time complexity is
 T (n) = (alpha) n lg (n).
For large n, the summation in the definition of Ex (H) can be replaced by an integral, and the probability distribution function f(r) is replaced by a distribution function g(x) over a continuous variable x (from 0 to 1). Thus
 Ex (H) = -2 ∫10 g(x)*x lg x dx.
For a uniform g(x) = 1 for 0 < x < 1, we will get
 (alpha) = 2 lg 2 = 1.386,
which is the result of Hoare.
Van Emden proposed an improved algorithm for Quicksort. Instead of using a fixed bound to perform a sort, van Emden's approach uses an interval instead of a single number as the bound, so the method is called the bounding interval method. He has proved, using the random walk argument, that (alpha) is now 1.140.
 We should note that Quicksort deals with sequence of numbers, but the binary search tree needs to compare strings. Suppose the keywords in the nodes of the tree are all k characters long, and the input string to be searched is also k characters long. To compare an input string with a keyword of a node requires k character-to-character comparisons in the worst case. In a tree with sufficiently randomized nodes, the average number of character-to-character comparisons will be between 1 and k. Thus by introducing a (beta) factor ranging from (1 / k) to 1, with (beta)*k representing the average number of character-to-character comparisons, the actual time complexity of searching (1 input string) in a binary search tree of n-nodes using Hoare's algorithm is
 (beta) * k * 1.386 * lg (n), where 1 / k < (beta) < 1.
II. Digital Search Tries
 In contrast to a binary search tree, each node of a digital search trie can only hold a 1-character long keyword. If the keyword of a data cell is longer than 1 character, then the node containing the first character of the keyword points to the node containing the next character, and so on. The height of a digital search trie equals the maximum length of the keywords of data cells. For example, the ordered sequence of data cells with the keywords (as at be by he in is it of on or to) will result in a digital search trie like the following:
 |

 --

 | | | | | |

 a b h i o t
 / \ / \ | / | \ / | \ |
 s t e y e n s t f n r o
 as at be by he in is it of on or to
The structure of this digital search trie is independent of the order of the data-cells is entered. In this case the height of the trie is 2. Searching a keyword in this digital search trie is very fast because of its small height. However, each node of this digital search trie requires a large amount of memory storage. Suppose each keyword of the data cells is formed from letters of the 26-letter lower-case alphabet. Then in the class of each node, there should be 26 pointers, instead of only 2 in the case of a binary search tree. Thus it is not practical to use the digital search trie for cases in which the available memory is limited.
III. Ternary Search Trees

 In a ternary search tree, each node also contains a 1-character long keyword. However, there are only 3 pointers, one pointing to the left tree, another to the next character in the data cell’s input keyword, and the third to the right tree. A ternary search tree is a hybrid of the binary search tree and the digital search trie. It inherits some of the speed of a digital search trie but only requires a moderate amount of memory, like a binary search tree. The input order of data cells into a ternary search trie is still important to create balanced tree, but less important than in a binary search tree.
 According to many authors ([Mehlhorn79] and [Bentley and Saxe79]), by choosing the true median of a set of data-cells as the starting node, we can create a well-balanced ternary tree without the randomizing process. We again use the example of ordered data cells (as at be by he in is it of on or to). First we pick the key "is" as the true
median and construct a root node containing "i." Its direct descendant node holds "s" and stores whatever data associated with “is.” For the left tree of "i,” we choose "be" as the true median and construct a node with keyword "b" whose directly descended node contains "e". The data is stored in the “e” node. For the right tree of "i" it is logical to chose "on" and construct the node "o" and its direct descent-node "n," and so on. The resulting ternary tree is shown below:
 ------ ------------------ i -------------------
 | : |
 ---------- b ------------ s o --- -------
 | : | / \ : |
 a e h n t n t
 : \ : / \ :
 s y e f r o
 \
 t
 as at be he in is it of on or to
where the horizontal dashed lines and a vertical solid bar should be combined to represent a long slanting line. If the horizontal dash line goes left first and followed by a vertical solid bar (like between "i" and "b"), it represents a long solid line slanting down left-ward. The vertical dotted line represents the direct descent from a parent
node. Only the parent and its direct descendants are considered to form a keyword of a data cell; "i" and "s" form a keyword "is", but not "i" and "b" since they are only connected by a solid slanting line and are not directly descended.
 To demonstrate the speed of a well-balanced ternary search tree versus an equally well-balanced binary search tree, let us consider the following examples:
 Suppose a well balanced ternary search tree is made of n-nodes, and the keywords of all the nodes are strings of length k characters. Now consider the search for an input keyword, which is also k characters long. We want to find out how many comparisons are needed, in the worst case, to match (or reject) the input key with a stored key. The comparison we make is always character-to-character. Suppose we are comparing an input character "p" with a character "r" in a node of the tree. Since "p" is less than "r", the search goes to the left of the node "r" and all the nodes lying at the right of "r" do not need to be searched. Thus in a well balanced tree, this kind of "NO MATCH" type comparison will always halve the number of remaining nodes to be searched. On the other hand, if we are comparing an input character "p" with a node "p", they match, and we go down the direct-descent route by one step. In this case, the number of remaining nodes to be searched will only decrease by one, but the number of remaining input characters to be compared is reduced by one. Thus the comparisons of characters can be classified into those two classes.

 Suppose it takes J comparisons to decide the input keyword that is k characters long. J1 comparisons are class 1 comparisons (each halves the number of remaining nodes to be compared), and J2 comparisons are class 2 (each reduce sthe number of input characters to be compared by one). Clearly,
 J = J1 + J2.
After J1 comparisons, the number of nodes left to be compared is n / 2J1. The maximum J1 can be is
 n / 2J1 = 1 or J1 = lg n.
After J2 comparisons, the number of input characters left to be compared is k - J2, so the maximum J2 can be is
 k - J2 = 0 or J2 = k.
Therefore, the worst case for J is J = lg n + k.
 Now for a well-balanced binary search tree of n-nodes and keywords of length k-characters, we already showed in Section II that the number of comparisons is:

 (beta) * k * 1.386 * lg (n), where1 / k < (beta) < 1.

The number of comparisons in a binary search tree is thus much larger than the number in a ternary search tree when n is very large.
 We can also consider the speed of a ternary search tree versus that of a binary search tree from the worst-case scenario. Let us consider 2-character long keywords formed from the 26 letters in the lower-case alphabet. There are totally 26 * 26 = 676 distinct keywords possible. Suppose we use those 676 keywords to construct a binary search tree. In the worst-case scenario, the input is already sorted, say in the ascending order. The binary search tree will be identical to a linked list with a height of 676. On the other hand, if we construct a ternary search tree with this ordered input, the tree looks like
 a --------
 : |
 a b -----------
 : |
 a --- c -------
 .
 .
 .
 .

 |
 z
 :
 a--- --------
 |
 z
A careful analysis will reveal that in this worst case the steps from the root node "a" to the last node "z" is 26 + 1 + 26 = 53, which is much less than the 676 of the binary search tree.
IV. Implementation
 LISP is ideal to implement search trees, since lists, the basic structure in LISP, are similar to trees. We do not need to invoke classes or pointers to create a search tree in LISP. A node is just represented by a list. In the case of the binary search tree, a node is represented by the list:
 ((multi-character-keyword data-stored) (left-tree) (right-tree))
and in the case of a ternary search tree, it is
 ((one-character-keyword data-stored) (middle-tree) (left-tree) (right-tree)).
We use n randomly generated 5-character long keywords (from an alphabet of 6 distinct characters) and looked at the time to construct a binary search tree and a ternary search tree, respectively. Since the keywords are randomly generated, randomization of the input data stream is unnecessary here. The running time of the algorithm in CLISP on the Caltech CS system for 3 n's, n= 10, n = 100 and n = 1000, are summarized in the table, confirming the superior speed of the ternary search tree versus the binary search tree:
 TIME TO CONSTRUCT A TREE

 BINARY SEARCH TREE TERNARY SEARCH TREE
 n = 10 1/1000 sec 1/625 sec
 n = 100 3/100 sec 21/1000 sec
 n = 1000 13/25 sec 16/25 sec
 TIME TO MAKE A SEARCH

 BINARY SEARCH TREE TERNARY SEARCH TREE
 n = 10 17/100000 sec 39/500000 sec
 n = 100 3/10000 sec 3/25000 sec

 n = 1000 1/2500 sec 1/5000 sec .
V. References

[Bentley & Saxe79]: "Algorithms on Vector Sets", SIGACT News, 11(9):36-39, Fall 1979.

[Bentley & Sedgewick97]: Jon L. Bentley and Robert Sedgewick, "Fast Algorithms for Sorting and Searching Strings", Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, January 1997.

[Hoare67]: C.A.R. Hoare, "Quicksort," Computer Journal, 5(1):10-15, April 1962.

[Mehlhorn79]: K. Mehlhorn, “Dynamic Binary Search”, SIAM Journal on Computing, 8(2): 175-198, May 1979.

[Van Emden70]: M. H. Van Emden, “Increasing the Efficiency of Quicksort”, Communications of the ACM, 13(9): 563-567, September 1970.

